Optimizing Eigenfaces by Face Masks for Facial Expression Recognition

نویسندگان

  • Carmen Frank
  • Elmar Nöth
چکیده

A new direction in improving modern dialogue systems is to make a human-machine dialogue more similar to a human-human dialogue. This can be done by adding more input modalities. One additional modality for automatic dialogue systems is the facial expression of the human user. A common problem in a human-machine dialogue where the angry face may give a clue is the recurrent misunderstanding of the user by the system. Or an helpless face may indicate a naive user who does not know how to utilize the system and should be led through the dialogue step by step. This paper describes recognizing facial expressions in frontal images using eigenspaces. For the classification of facial expressions, rather than using the face whole image we classify regions which do not differ between subjects and at the same time are meaningful for facial expressions. Important regions change when projecting the same face to eigenspaces trained with examples of different facial expressions. The average of different faces showing different facial expressions forms a face mask. This face mask fades out unnecessary or mistakable regions and emphasizes regions changing between facial expressions. Using this face mask for training and classification of neutral and angry expressions of the face, we achieved an improvement of up to 5% points. The proposed method may improve other classification problems that use eigenspace methods as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Facial Expression Recognition using Eigen Face and Neural Network

In many face recognition systems the important part is face detection. The task of detecting face is complex due to its variability present across human faces including color, pose, expression, position and orientation. A face detection system based on principal component analysis algorithm and neural network techniques. Facial expression as a natural and efficient way of communication, it can ...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Human Emotion Recognition Using Thermal Image Processing and Eigenfaces

As peoples use body language or non-verbal language such as gesture and facial expression in communication; computers will also be able to communicate humans .In the digital era, there are various computational models are already exist for recognition of different facial expressions (Happy, Sad, Disgust, Angry and neutral) but we are trying to propose a computational model of facial expression ...

متن کامل

Summary : ” Eigenfaces for Recognition ” ( M . Turk , A . Pentland )

”Eigenfaces for Recognition” seeks to implement a system capable of efficient, simple, and accurate face recognition in a constrained environment (such as a household or an office). The system does not depend on 3-D models or intuitive knowledge of the structure of the face (eyes, nose, mouth). Classification is instead performed using a linear combination of characteristic features (eigenfaces...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003